BACKGROUND OF STUDY
Medical diagnosis, (often simply termed diagnosis) refers both to the process of attempting to determine or identifying a possible disease or disorder to the opinion reached by this process. A diagnosis in the sense of diagnostic procedure can be regarded as an attempt at classifying an individual’s health condition into separate and distinct categories that allow medical decisions about treatment and prognosis to be made. Subsequently, a diagnostic opinion is often described in terms of a disease or other conditions.
In the medical diagnostic system procedures, elucidation of the etiology of the disease or conditions of interest, that is, what caused the disease or condition and its origin is not entirely necessary. Such elucidation can be useful to optimize treatment, further specify the prognosis or prevent recurrence of the disease or condition in the future.
Clinical decision support systems (CDSS) are interactive computer programs designed to assist healthcare professionals such as physicians, physical therapists, optometrists, healthcare scientists, dentists, pediatrists, nurse practitioners or physical assistants with decision making skills. The clinician interacts with the software utilizing both the clinician’s knowledge and the software to make a better analysis of the patient’s data than neither humans nor software could make on their own.
Typically, the system makes suggestions for the clinician to look through and the he picks useful information and removes erroneous suggestions.
To diagnose a disease, a physician is usually based on the clinical history and physical examination of the patient, visual inspection of medical images, as well as the results of laboratory tests. In some cases, confirmation of the diagnosis is particularly difficult because it requires specialization and experience, or even the application of interventional methodologies (e.g., biopsy). Interpretation of medical images (e.g., Computed Tomography, Magnetic Resonance Imaging, Ultrasound, etc.) usually performed by radiologists, is often limited due to the non-systematic search patterns of humans, the presence of structure noise (camouflaging normal anatomical background) in the image, and the presentation of complex disease states requiring the integration of vast amounts of image data and clinical information. Computer-Aided Diagnosis (CAD), defined as a diagnosis made by a physician who uses the output from a computerized analysis of medical data as a ―second opinion‖ in detecting lesions, assessing disease severity, and making diagnostic decisions, is expected to enhance the diagnostic capabilities of physicians and reduce the time required for accurate diagnosis. With CAD, the final diagnosis is made by the physician.
The first CAD systems were developed in the early 1950s and were based on production rules (Shortliffe, 1976) and decision frames (Engelmore & Morgan, 1988). More complex systems were later developed, including blackboard systems (Engelmore & Morgan, 1988) to extract a decision, Bayes models (Spiegelhalter, Myles, Jones, & Abrams, 1999) and artificial neural networks (ANNs) (Haykin, 1999). Recently, a number of CAD systems have been implemented to address a number of diagnostic problems. CAD systems are usually based on biosignals, including the electrocardiogram (ECG), electroencephalogram (EEG), and so on or medical images from a number of modalities, including radiography, computed tomography, magnetic resonance imaging, ultrasound imaging, and so on.
In therapy, the selection of the optimal therapeutic scheme for a specific patient is a complex procedure that requires sound judgement based on clinical expertise, and knowledge of patient values and preferences, in addition to evidence from research. Usually, the procedure for the selection of the therapeutic scheme is enhanced by the use of simple statistical tools applied to empirical data. In general, decision making about therapy is typically based on recent and older information about the patient and the disease, whereas information or prediction about the potential evolution of the specific patient disease or response to therapy is not available. Recent advances in hardware and software allow the development of modern Therapeutic Decision Support (TDS) systems, which make use of advanced simulation techniques and available patient data to optimize and individualize patient treatment, including diet, drug treatment, or radiotherapy treatment.
In addition to this, CDS systems may be used to generate warning messages in unsafe situations, provide information about abnormal values of laboratory tests, present complex research results, and predict morbidity and mortality based on epidemiological data.
1.2 STATEMENT OF THE PROBLEM
Disease diagnosis and treatment constitute the major work of physicians. Some of the time, diagnosis is wrongly done leading to error in drug prescription and further complications in the patient’s health. It has also been noticed that much time is spent in physical examination and interview of patients before treatment commences. The clinical decision support system (CDSS) shall address these problems by effectively providing quality diagnosis in real-time.
1.3 OBJECTIVES OF THE STUDY
Introduction
Eric Hoffer once noted that, “there are similarities between absolute power and absolute faith; a dem...
ABSTRACT
This research study is on the importance of salesmanship in the marketing of consumer goods. S...
ABSTRACT
The aim of the study is to examine the impact of tax policy on inclusive growth in Nigeria. The ex post facto analysis design wa...
Abstract
This study was carried out on the impact of cashless policy on the economic growth of Nigeria. The research des...
ABSTRACT
This research work on A Comparative Study of Expenditure Controls method in Government and private Hospitals is aimed at studyin...
Abstract: This study investigates strategies for developing resilience in early childhood education (ECE) pr...
Abstract: This study examines the impact of adult education on workforce development, focusing on how continuing education programs enhance th...
Background to the Study
One of the most significant occurrences of the 20th century is the invention of the Internet an...
THE IMPACT OF CUSTOMER EXPECTATIONS ON SERVICE QUALITY
This study aimed to explore the impact of customer expectations o...
ABSTRACT
The study was predicated on the need to provide empirical evidences to the influence of organi...